"《電力系統自適應電壓控制:建模、設計與應用》(Adaptive Voltage Control in Power Systems :Modeling, Design and Applications)文字版[PDF]"介紹
簡 介
中文名: 電力系統自適應電壓控制:建模、設計與應用
原名: Adaptive Voltage Control in Power Systems :Modeling, Design and Applications
別名: 無
作者: Giuseppe Fusco
Mario Russo
譯者: 無
圖書分類: 科技
資源格式: PDF
版本: 文字版
出版社: Giuseppe Fusco
Mario Russo
書號: 9781846285653
發行時間: 2007年
地區: 英國
語言: 英文
簡介:
內容簡介:Power quality is a pressing concern in electric power systems. One of the main requirements of power quality management is the guarantee of a sinusoidal voltage waveform with adequate amplitude at each node of the network. The fulfilment of such a control objective is facilitated by adaptive systems which can account for unpredictable fluctuations in operating conditions.
Adaptive Voltage Control in Power Systems, a self-contained blend of theory and novel application, is an in-depth treatment of such adaptive control schemes. The reader moves from power-system-modelling problems through illustrations of the main adaptive control systems (self-tuning, model-reference and nonlinearities compensation) to a detailed description of design methods: Kalman filtering, parameter-identification algorithms and discrete-time controller design are all represented. Case studies address applications issues in the implementation of adaptive voltage control.
Practicing engineers and researchers in power systems and control engineering will find this monograph, written by representatives of each field, to be a valuable synthesis of both while its accessible style will also appeal to graduate students.
內容截圖:備注:本書可供相關專業學生與研究人員學習參考。
本書是Springer International Publishing出版的Advances in Industrial Control系列組成之一,後續我將繼續更新此系列。
目錄:
1 The Voltage Control Problem in Power Systems . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Power System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Voltage Control in HV Transmission Systems . . . . . . . . . . . . . . . 4
1.4 Voltage Control in MV and LV Systems . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Voltage Control at Fundamental Frequency . . . . . . . . . . . 7
1.4.2 Voltage Harmonic Distortion Containment . . . . . . . . . . . . 8
2 System Modeling for Nodal Voltage Regulator Design . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Voltage Control Device Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Synchronous Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Static VAr Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Active and Hybrid Shunt Filters . . . . . . . . . . . . . . . . . . . . . 19
2.3 Power System Equivalent Models . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Frequency Domain Models . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Time Domain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Voltage and Current Phasor Identification . . . . . . . . . . . . . . . . . 27
3.1 Techniques Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Off-line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 On-line Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 State-space Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Convergence and Stability Properties . . . . . . . . . . . . . . . . 32
4 Self-tuning Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Indirect Self-tuning Voltage Regulator Design . . . . . . . . . . . . . . . 38
4.2.1 Recursive Least-squares Algorithm . . . . . . . . . . . . . . . . . . 39
4.2.2 Pole-assignment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Pole-shifting Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Generalized Minimum Variance Pole-assignment Design 48
4.2.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Direct Self-tuning Voltage Regulator Design . . . . . . . . . . . . . . . . 63
4.3.1 Pole-assignment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Generalized Minimum Variance Pole-assignment Design 72
4.3.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Properties of the Recursive Least-squares Algorithm . . . . . . . . . 78
5 Model-reference Adaptive Voltage Regulators . . . . . . . . . . . . . 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Direct Model-reference Adaptive Voltage Regulator Design . . . 88
5.2.1 Model-reference Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Adaptive Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Indirect Model-reference Adaptive Voltage Regulator Design . . 97
5.4 Properties of the Adaptive Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6 Adaptive Nonlinearities Compensation Technique . . . . . . . . . 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Thevenin Circuit Parameters Estimation . . . . . . . . . . . . . . . . . . . 110
6.3 Adaptive Voltage Regulator Design . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.1 Synchronous Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 Static VAr Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Active and Hybrid Shunt Filters . . . . . . . . . . . . . . . . . . . . . 123
6.3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A Computer Models and Topology of Networks . . . . . . . . . . . . . . 141
A.1 High-voltage Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.1.1 Computer Models of Components . . . . . . . . . . . . . . . . . . . 141
A.1.2 Simulated Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.1.3 Network Equivalent Time Domain Model . . . . . . . . . . . . . 148
A.2 Industrial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161