中文名: 代數數論
原名: Algebraic Number Theory
作者: (德)Jurgen Neukirch
譯者: Norbert Schappacher
資源格式: PDF
版本: 掃描版
出版社: Springer
書號: 3540653996
發行時間: 1999年
地區: 美國
語言: 英文
簡介:
內容簡介:
"The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in Z.blatt f. Math., 1992 "The author's enthusiasm for this topic is rarely as evide! nt for the reader as in this book. - A good book, a beautiful book." F. Lorenz in Jber. DMV 1995 "The present work is written in a very careful and masterly fashion. It does not show the pains that it must have caused even an expert like Neukirch. It undoubtedly is liable to become a classic; the more so as recent developments have been taken into account which will not be outdated quickly. Not only must it be missing from the library of no number theorist, but it can simply be recommended to every mathematician who wants to get an idea of modern arithmetic." J. Schoissengeier in Montatshefte Mathematik 1994.
內容截圖:
目錄:
Chapter I:Algebraic Integers .
1. The Gaussian Integers
2. Integrality
3. Ideals
4. Lattices
5. Minkowski Theory
6. The Class Number
7. Dirichlet's Unit Theorem
8. Extensions of Dedekind Domains
9. Hilbert's Ramification Theory
10. Cyclotomic Fields
11. Localization
12. Orders
13. One-dimensional Schemes
14. Function Fields
Chapter II:The Theory of Valuations
1. The p-adic Numbers
2. The p-adic Absolute Value
3. Valuations
4. Completions
5. Local Fields
6. Henselian Fields
7. Unramified and Tamely Ramified Extensions
8. Extensions of Valuations
9. Galois Theory of Valuations
10. Higher Ramification Groups
Chapter III:Riemann-Roeh Theory
1. Primes
2. Different and Discriminant
3. Riemann-Roch
4. Metrized o-Modules
5. Grothendieck Groups
6. The Chern Character
7. Grothendieck-Riemann-Roch
8. The Euler-Minkow.ski Characteristic
Chapter IV:Abstract Class Field Theory
1. Infinite Galois Theory
2. Projective and Inductive Limits ..
3. Abstract Galois Theory
4. Abstract Valuation Theory
5. The Reciprocity Map
6. The General Reciprocity Law
7. The Herbrand Quotient
Chapter V:Local Class Field Theory
1. The Local Reciprocity Law
2. The Norm Residue Symbol over Q(p)
3. The Hilbert Symbol
4. Formal Groups
5. Generalized Cyclotomic Theory
6. Higher Ramification Groups
Chapter VI:Global Class Field Theory
1. Idèles and Idèle Classes
2. Idèles in Field Extensions
3. The Herbrand Quotient of the Idèle Class Group
4. The Class Field Axiom
5. The Global Reciprocity Law
6. Global Class Fields
7. The Ideal-Theoretic Version of Class Field Theory
8. The Reciprocity Law of the Power Residues
Chapter VII:Zeta Functions and L-series
1. The Riemann Zeta Function
2. Dirichlet L-series
3. Theta Series
4. The Higher-dimensional Gamma Function
5. The Dedekind Zeta Function
6. Hecke Characters
7. Theta Series of Algebraic Number Fields
8. Hecke L-series
9. Values of Dirichlet L-series at Integer Points
10. Artin L-series
11. The Artin Conductor
12. The Functional Equation of Artin L-series
13. Density Theorems
Bibliography
Index